Low Creep/Low Relaxation Materials for Deployable Structures

Completed Technology Project (2017 - 2019)

Project Introduction

Design of new, stiff molecular structures containing aromatic rings. Candidate polymer structures are aromatic polyimides synthesized from rigid monomers. Use of reactive functional groups to control cross-linking density, keeping a good balance between restriction of molecular rearrangement and material brittleness. Addition of second phase components to restrict large scale rearrangements of polymer molecules.#Characterization of the temperature-dependent creep and stress relaxation properties to predict life time creep behavior.

Anticipated Benefits

Potential for large space structures payload applications such as solar sails, solar arrays, antennas, payload booms, Moon/Mars habitats and planetary decelerators.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Langley Research Center(LaRC)	Lead	NASA	Hampton,
	Organization	Center	Virginia
National Institute of	Supporting	Academia	Hampton,
Aerospace	Organization		Virginia

Low Creep/Low Relaxation Materials for Deployable Structures

Table of Contents

Project Introduction	1
Anticipated Benefits	
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Project Website:	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Center Innovation Fund: LaRC CIF

Low Creep/Low Relaxation Materials for Deployable Structures

Completed Technology Project (2017 - 2019)

Primary U.S. Work Locations

Virginia

Project Transitions

October 2017: Project Start

September 2019: Closed out

Closeout Summary: Develop resins for novel low-creep and low-stress-relaxati on polymer composites for inflatable and deployable space structures like solar s ails. (Current-technology fiber reinforced polymer composite materials can caus e dimensional instability due to materials' inherent viscoelastic behavior).

Project Website:

https://www.nasa.gov/directorates/spacetech/innovation_fund/index.html#.VC

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Langley Research Center (LaRC)

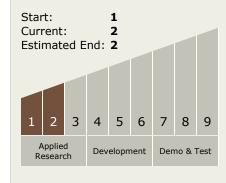
Responsible Program:

Center Innovation Fund: LaRC CIF

Project Management

Program Director:

Michael R Lapointe


Program Manager:

Julie A Williams-byrd

Principal Investigator:

Jeffrey A Hinkley

Technology Maturity (TRL)

Center Innovation Fund: LaRC CIF

Low Creep/Low Relaxation Materials for Deployable Structures

Completed Technology Project (2017 - 2019)

Technology Areas

Primary:

Target Destinations

The Moon, Mars, Others Inside the Solar System

